{lambda talk}

Alain Marty Engineer Architect
Villeneuve de la Raho, France
marty.alain@free.fr

ABSTRACT

The {lambda way} project is a web application built on two
engines, {lambda talk} and {lambda tank}. {lambda talk} is a
purely functional language unifying authoring, styling and
scripting in a single and coherent Lisp-like syntax, working in
{lambda tank}, a tiny wiki built as a thin overlay on top of any
web browser. In this paper we forget {lambda tank}, mainly a
PHP engine managing text files on the server side, and
progressively introduce {lambda talk}, a Javascript engine
evaluating code in realtime on the client side. The making of
{lambda talk} is done in three stages:

¢ 1) we define the minimal set of rules making {lambda talk} a
programming language, complete even if unusable,

* 2) we progressively add numbers, operators, data and control
structures making {lambda talk} more usable,

* 3) we finally build on the browsers' full functionalities a set of
libraries making {lambda talk} wusable and much more
efficient.

As a guilding line, at each stage, we compute with a total precision
the factorial of 5 and 50:

5!
50!

120
30414093201713378043612608166064
768844377641568960512000000000000

In a last section, APPENDICE, some explanations are given on
the {lambda talk}'s Javascript implementation.

KEYWORDS

e Information systems~Wikis

e Theory of computation~Regular languages

* Theory of computation~Lambda calculus

* Software and its engineering~Functional languages

e Software and its engineering~Extensible Markup Language
(XML)

INTRODUCTION

{lambda talk} expressions are written in an editor frame,
evaluated in real time and displayed in the wiki's viewer frame,
then saved and published on the WEB. « A wiki is a web
application which allows collaborative modification, extension, or
deletion of its content and structure 'l » The father of this
concept, Ward Cunninghamm, gives a simple and clear
introduction to {lambda talk}:

* 1) Away from curly braces {} words are just words:

Hello World!
-> Hello World!

* 2) Expressions are written in a prefix notation:

2+3 is equal to {b {+ 2 3}}
-> 2+3 is equal to 5

¢ 3) Functions are created with lambda and named with def:

{def SMART ADD
{lambda {:a :b}
rat:b is equal to {b {+ :a
-> SMART_ADD

tb}}}}

{SMART ADD 2 3}
-> 2+3 is equal to 5

These examples use the "+" Math operator, the "b" HTML/CSS
markup operator and Javascript numbers. In the following we
want to introduce {lambda talk} built upon the deepest foundation
possible, simple words, and we will ignore everything but words
until the third section.

1. WORDS

We present the structure and evaluation of a {lambda talk}
expression.

1.1. expressions

{lambda talk} is mainly built on three rules freely inspired by the
A-calculus). An expression is defined recursively as follows:

expression is [word|abstraction|application]*

where
1) word is [M\s{}]*
2) abstraction is {lambda {word*} expression}

3) application 1is {abstraction expression}

An expression is made of words, abstractions and
applications where 1) a word is any character except spaces
"\s" and curly braces "{}", 2) an abstraction is the
"process" (called a function) selecting a sequence of words
(called arguments) in an expression (called body), 3) an
application is the "process" calling an abstraction to
replace selected words by some other words (called values).

The evaluation follows these rules:

1. words are not evaluated,

2. abstractions are evaluated before applications,

3. an abstraction is evaluated to a single word, a reference to
an anonymous a function stored in a global dictionary,

javascript:LAMBDATANK.toggle_visibility("pop_menu_view")

initially empty,

4. an application is progressively evaluated from inside out,
to a sequence of words,

5.the evaluation stops when all expressions have been
reduced to a sequence of words.

What can we do with that?

1.1.1.words

Hello World
-> Hello World

Words are not evaluated and are displayed as they are.
1.1.2. abstraction

{lambda {o a}
-> LAMB 1

oh happy day!}

The abstraction selects o and a as characters whose occurences in
the expression oh happy day! are to be replaced by some
future values, and returns the reference to an anonymous function.

1.1.3. application (1)

{{lambda {o a} oh happy day!} o0O0Oo aaAAaa}
-> 0000oh haaARaappy daaARaay!

The abstraction is defined and immediately called. The abstraction
is first evaluated to a word, say _LAMB 10, the application
{_LAMB_10 o0OOOo aaARaa} gets the given values, calls the
abstraction which makes the substitution and returns the result,
0000oh haaARaappy daaBAAaay!.

1.14. application (2)

{{lambda {z}
{z {lambda {x y}
{{lambda {x y z}
{z x y}} Hello World}}
-> Hello

x}}}

{{lambda {z}
{z {lambda {x y}
{{lambda {x y z}
{z x y}} Hello World}}
-> World

vt}

These expressions return respectively the first and the second
words of Hello World. This is very similar to a pair and its
accessors. Let's trace the evaluation leading to Hello:

¢ 1) Nested lambdas are first evaluated:

1: {{lambda {z} {z {lambda {x y} x}}}
{{lambda {x y z} {z x y}} Hello World}}
2: {{lambda {z} {z LAMB 1}}
{ LAMB 2 Hello World}}
3: { LAMB 3 { LAMB 2 Hello World}}
where
_LAMB 1 replaces {lambda {x y} x}
_LAMB 2 replaces {lambda {x y z} {z x y}}
LAMB 3 replaces {lambda {z} {z fl}}

e 2) Then simple forms are evaluated:

1: { LAMB 3 { LAMB 2 Hello World}}
2: {_LAMB 3 {{lambda {x y z} {z x y}} Hello

World}}

{{lambda {x y 2z} {2z x y}} Hello World} is a
partial application replacing "x" and "y" by "Hello" and "World",
creating a new lambda waiting for the third value, {lambda
{z} {z Hello World}}, and returning a reference,
_LAMB 4.

3: { LAMB 3 LAMB 4}
4: {{lambda {z} {z _LAMB 1}} LAMB 4}

5: { LAMB 4 LAMB 1}
6: {{lambda {z} {z Hello World}} _LAMB 1}
7: { _LAMB 1 Hello World}

8: {{lambda {x y} x} Hello World}

9: Hello

To sum up on lambdas:

* 1) lambdas are first class functions,

* 2) lambdas accept partial function application: a lambda
called with a number of values lesser than their arity
memorizes the given values and returns a new lambda waiting
for the rest.

* 3) lambdas don't create closures, inner lambdas have no
access to outer lambdas' arguments, there is no lexical
scoping, no environment, no free variables.

Lambdas are pure black boxes, independant of any context, as are
mathematical functions.

1.1.5. application (3)

{{lambda {n} {{lambda {g n} {g g n}} {lambda {g
n} {{lambda {p t £ g n} {{{p n} {{lambda {x y z}
{z x y}} t £}} g n}} {lambda {n} {{lambda {n} {n
{lambda {x} {lambda {z} {z {lambda {x y} y}}}}
{lambda {z} {z {lambda {x y} x}}}}} n}} {lambda
{g n} {{lambda {n f x} {f {{n f} x}}} {lambda {f
x} x}}} {lambda {g n} {{lambda {n m f} {m {n
f}}} n {g g {{lambda {n} {{lambda {z} {z {lambda
{x v} x}}} {{n {lambda {p} {{lambda {x y z} {z x
y}} {({lambda (z} {z {lambda {x y} y}}} p)
{{lambda {n f x} {f {{n f} x}}} {{lambda {z
{lambda {x y} y}}} p}}}}} {{lambda {x y z}
yv}} {lambda {f x} x} {lambda {f x} x}}}}} n
g n}} n}} {lambda {f x} {f {f {f {f {f x}}}
-> LAMB 167

}o{z
{z x
Frid
PRl

z
}
}

At this point, you should believe that this unreadble expression
evaluated to an anonymous function is the factorial of 5, 5! = 120,
computed using its recursive definition:

1 if 0 else fac(n) = n*fac(n-1)

fac(n) = n ==

1.2. names

In order to make code more readable we introduce a second
special form {def word expression}, with which we will
populate the global dictionary with constants and give names to
anonymous functions. Let's rewrite with names the previous
examples.

1.2.1. words

Any sequence of words can be given a name:

{def HI Hello World}
-> HI

{HI}
-> Hello World

Note that the word HI is not evaluated out of curly braces {}.
Note that, in a spreadsheet, one write =PI () to get the value
associated to PI.

1.2.2. abstractions
An anonymous functions can be given a name:

{def GOOD_DAY {lambda {:o :a}
-> GOOD_ DAY

:oh h:appy day!}}

123¢wwwmmn”)
making applications easier:

{GOOD_DAY 00000 aaAaa}
-> 0000oh haaRaappy day!

{GOOD_DAY & ¥}
-> &h h¥ppy day!

Note: arguments and their occurences in the function's body have
been prefixed with a colon ":". Doing so prevents unintentional
substitutions in the function's body, for instance the word day
hasn't been replaced by daaAaay or d ¥ y. Escaping/marking
arguments, for instance prefixing them with a colon ":", is highly
recommended if not always mandatory. We will do it
systematically and we add this constraint to the previous rules: «
In lambda expressions arguments arg must at least be tagged by
some escaping character, for instance :arg, or for a better
security, bracketted between two, for instance :arg:.

1.2 4. application (2

{def CONS
-> CONS
{def CAR
:x}}h}H}

-> CAR
{def CDR
28BN

-> CDR

{lambda {:x :y :z} {:z :x :y}}}

{lambda {:z} {:z {lambda {:x :y}

{lambda {:z} {:z {lambda {:x :y}

{CAR {CONS Hello World}}
-> Hello
{CDR {CONS Hello World}}
-> World

In fact we just have built and used pairs and its accessors. Where
LISP* and SCHEME!! use a closure

(def cons (lambda (x y) (lambda (z) (z x y))))
(def car (lambda (z) (z (lambda (x y) x))))
(def cdr (lambda (z) (z (lambda (x y) y))))

{lambda talk} uses partial application. There is no outer
environment storing accessible values, values are stored inside
lambdas.

1.2.5. application (3)

We rewrite the example 1.1.5. using two names:

{def FOO {lambda {:n} {{lambda {:g :n} {:g :g
:n}} {lambda {:g :n} {{lambda {:b :t :f :g :n}
{{{:b :n} {{lambda {:x :y :z} {:z :x :y}} :t
:f}} :g :n}} {lambda {:n} {{lambda {:n} {:n
{lambda {:x} {lambda {:z} {:z {lambda {:x :y}
:y}t}}} {lambda {:z} {:z {lambda {:x :y} :x}}}}}
:n}} {lambda {:g :n} {{lambda {:n :f :x} {:f
{{:n :f} :x}}} {lambda {:f :x} :x}}} {lambda {:g
:n} {{lambda {:n :m :f} {:m {:n :f}}} ::n {:g :g
{{lambda {:n} {{lambda {:z} {:z {lambda {:x :y}
:x}}} {{:n {lambda {:p} {{lambda {:x :y :z} {:z
:x :yt} {{lambda {:z} {:z {lambda {:x :y} :y}}}
:pt {{lambda {:n :f :x} {:f {{:n :f} :x}}}
{{lambda {:z} {:z {lambda {:x :y} :v}}} :p}}}}}
{{lambda {:x :y :2z} {:z :x :y}} {lambda {:f :x}
:x} {lambda {:f :x} :x}}}}} n}}}} :g :n}} :n}}
}
-> FOO

{def BAR

{lambda {:f :x} {:f {:£f {:£f {:f {:f :x}}}}}}}
-> BAR
{FOO BAR }
-> LAMB 8

We notice that FOO is applied to BAR, an anonymous function
applying 5 times : £ to :x. We can now better understand that the
result is a reference to an anonymous function which could be
associated to the factorial of 5. And we guess that applying 50
times : £ to :x would lead to an anonymous function associated
to the factorial of 50 ... provided we had a huge memory and
thousands years before us!

Concluding this first section we note that, until now, {lambda talk}
knows nothing but text substitution and that the dictionary
contains no built-in primitive. In the following section, stil/
without using any Javascript Math object, we progressively build
numbers, operators, data and control structures to compute 5!
and 50!.

2. NUMBERS

Following "Collected Lambda Calculus Functions 6] we
progressively add numbers, operators, data and control structures.

2.1. numbers

We define the so-called Church numbers:

{def ZERO {lambda {:f :x} :x}}

-> ZERO

{def ONE {lambda {:f :x} {:f :x}}}

-> ONE

{def TWO {lambda {:f :x} {:f {:f :x}}}}

-> TWO

{def THREE {lambda {:f :x} {:f {:f {:f :x}}}}}
-> THREE

{def FOUR {lambda {:f :x} {:f {:f {:f {:f
:x}rhbbY

-> FOUR

{def FIVE {lambda {:f :x} {:f {:f {:f {:f {:f
X}

-> FIVE

Applied to a couple of any words, we get strange things:

{ZERO . .} ->

{ONE o> (.0

{TWO . .} => (. (. .))

{FIVE P> oG ()))))

We define the function CHURCH which translates Church numbers
in a more familiar shape:

{def CHURCH
{lambda {:n}
{{:n {lambda {:x} {+ :x 1}}} 0}}}
-> CHURCH
{CHURCH ZERO} -> 0
{CHURCH ONE} -> 1

{CHURCH FIVE} -> 5

Note: the CHURCH function is built on a primitive function, '+'
and on the Javascript number primitive, which are not supposed to
exist at this point. Consider that it's only for readability.

2.2. operators

Based on Church numbers, which are iterators by themselves, we
can easily define and test a first set of operators:

{def SUCC {lambda {:n :f :x} {:f {{:n :f} :x}}}}
-> SUCC

{def ADD {lambda {:n :m :f :x} {{:n :f} {{:m :f}
:x}}h}h}

-> ADD

{def MUL {lambda {:n :m :f} {:m {:n :f}}}}

-> MUL

{def POWER {lambda {:n :m} {:m :n}}}

-> POWER

{CHURCH {SUCC ZERO}} -> 1

{CHURCH {SUCC ONE}} -> 2

{CHURCH {SUCC THREE}} -> 3

{CHURCH {ADD TWO THREE}} -> 5 // 243

{CHURCH {MUL TWO THREE}} -> 6 // 2*3

{CHURCH {POWER THREE TWO}} -> 9 // 372
Building "opposite" functions like PRED, SUBTRACT,

DIVIDE is not so easy - and Church himself avoided them in the
primitive version of A-calculus. The answer was given by Stephen
Cole Kleene!”l, the father of Regular Expressions: Church
numbers can be used to iterate and pairs to aggregate. This is
how:

* we define a function PRED.PAIR getting a pair [a,a] and
returning a pair [a,a+1],

e the function PRED computes n iterations of PRED.PAIR
starting on the pair [0, 0] and leading to the pair [n-1,n]
and returns the first, n-1:

{def PRED.PAIR {lambda {:p}
{CONS {CDR :p} {SUCC {CDR :p}}}}}
-> PRED.PAIR
{def PRED {lambda {:n}
{CAR {{:n PRED.PAIR}
-> PRED

{CONS ZERO ZERO}}}}}

{CHURCH {PRED FIVE}}
-> 4

2.3.« To Iterate is Human, ...

We already have all what is needed to evaluate complex
expressions like 1%2*3%..*n. Remembering the PRED operator:

* we define a function ITER.PAIR getting a pair [a,b] and
returning a pair [a+1,a*b],

e the function ITER computes n iterations of ITER.PAIR,
starting on the pair [1,1] and leading to the pair [n,n!]
and returns the second, n!

{def ITER

{def ITER.PAIR

{lambda {:p}

{CONS {SUCC {CAR :p}}
{MUL {CAR :p} {CDR :p}}}}}

{lambda {:n}

{CDR {{:n ITER.PAIR} {CONS ONE ONE}}}}}
-> ITER
{CHURCH {ITER TWO}} -> 2
{CHURCH {ITER THREE}} -> 6
{CHURCH {ITER FOUR}} -> 24
{CHURCH {ITER FIVE}} -> 120

24. ...to Recurse, Divine »81

So, we would like to define the factorial using its recursive
mathematical definition:
fac(n) = 1 if n ==

0 else fac(n) = n*fac(n-1)

We begin to define a few boolean operators:

{def TRUE {lambda {:z} {:z {lambda {:x :y}
:x}}}}
-> TRUE
{def FALSE {lambda {:z} {:z {lambda {:x :y}
:yhih}
-> FALSE
{def IF {lambda {:x :y :z} {:z :x :y}}}
-> IF
{def ISZERO {lambda {:n}
{:n {lambda {:x} FALSE} TRUE}}}

-> ISZERO

Note that TRUE,
CONS.

FALSE, IF are aliases to CAR, CDR,

Here is the tricky part! We must remember that all expressions
except abstractions are evaluated eagerly: functions' arguments are
called by value and not called by name. Inside the IF function
every arguments are evaluated before the call and this would lead
to an infinite loop in a recursive process. A workaround is to use
abstraction to introduce manually some kind of lazyness. This is
an answer:

{def FAC
{lambda {:n}
{{lambda {:bool :true :false :n}
{{{:bool :n} // compute bool
{IF :true :false}} // choose now
:n}} // force now
{lambda {:n} {ISZERO :n}} // delay
{lambda {:n} {SUCC ZERO}} // delay
{lambda {:n} {MUL :n {FAC {PRED :n}}}}
:n // for n

11}
-> FAC

{CHURCH
-> 120

{FAC FIVE}}

Let's introduce some Y-combinator making recursive an almost
recursive function:

{def Y {lambda {:g :n} {:g :g :n}}} ->Y
{def IFTHENELSE {lambda {:b :t :f :g :n}
{{{:b tn} {IF :t :f}} :g :n} }}

-> IFTHENELSE

{def ALMOST FAC {lambda {:g :n}
{IFTHENELSE

{lambda {:n} {ISZERO :n}}

{lambda {:g :n} {SUCC ZERO}}

{lambda {:g :n} {MUL :n {:g :g {PRED :n}}}}
tg n }}}

-> ALMOST_FAC

{CHURCH {Y ALMOST FAC FIVE}}
-> 120

Let's mix the both:

{def YFAC {lambda {:n}
{{lambda {:g :n} {:g :g
{lambda {:g :n}
{IFTHENELSE

:n}}

{lambda {:n} {ISZERO :n}}
{lambda {:g :n} {SUCC ZERO}}
{lambda {:g :n} {MUL :n {:g :g {PRED :n}}}}
tg :n}}
:n}t}}
-> YFAC
{CHURCH {YFAC FIVE}}
-> 120

Throwing away the name, let's define and immediately call the
lambda on the value S:

{ CHURCH
{{lambda {:n} {{lambda {:g :n}
{lambda {:g :n}
{IFTHENELSE
{lambda {:n} {ISZERO
{lambda {:g :n}

{:g :g :n}}

:n}}
{SUCC ZERO}}

{lambda {:g :n} {MUL :n {:g :g {PRED :n}}}}
:g :n}} :n}} FIVE}}
-> 120

Finally, let's replace all constants by their lambda based values to
get a pure A-calculus expression made of words,
abstractions and applications:

{CHURCH {{lambda {:n} {{lambda {:g :n} {:g :g
:n}} {lambda {:g :n} {{lambda {:b :t :f :g :n}
{{{:b :n} {{lambda {:x :y :z} {:z :x :y}} :t
:f}} :g :n}} {lambda {:n} {{lambda {:n} {:n
{lambda {:x} {lambda {:z} {:z {lambda {:x :y}
:y}}r} {lambda {:z} {:z {lambda {:x :y} :x}}}}}
:n}} {lambda {:g :n} {{lambda {:n :f :x} {:f
{{:n :f} :x}}} {lambda {:f :x} :x}}} {lambda {:g
:n} {{lambda {:n :m :f} {:m {:n :f}}} :n {:g :g
{{lambda {:n} {{lambda {:z} {:z {lambda {:x :y}
:x}}} {{:n {lambda {:p} {{lambda {:x :y :z} {:z
:x :y}} {{lambda {:z} {:z {lambda {:x :y} :y}}}
:p} {{lambda {:n :f :x} {:f {{:n :f} :x}}}
{{lambda {:z} {:z {lambda {:x :y} :y}}} :p}}}}}

{{lambda {:x :y :z} {:z :x :y}} {lambda {:f :x}
:x} {lambda {:f :x} :x}}}}} :n}}}} g :n}} :n}}
{lambda {:f :x} {:f {:f {:f {:f {:f :x}}}}}}}}
-> 120

Concluding this section, using nothing but words and text
replacement processes, forgetting limitations of Javascript
numbers and so theoretically regardless of its size and with a total
precision, we could compute the factorial of any natural number.
But if computing 5! is rather fast, about 50ms on a recent
computer, computing 50! would still be too long ! It's time to
remember that we can use the power of modern browsers to make
things easier and much more faster!

3. {LAMBDA TALK}

In this section Church numbers and their related operators built as
user defined functions are forgotten and replaced by primitive
functions built on the browser's foundations. We use Javascript's
numbers, Math operators and functions, HTML tags, CSS rules,
SVG and more. We add aggregate datas like pairs, lists,
arrays and some others specific to the wiki context. We add new
special forms, [1f, let, quote, macro]. Note that there
is no set! special form, {lambda talk} is purely functional. This
is the current dictionary:

DICTionary: (249) [debug, lib, eval, apply, <, >, <=, >=, =, not,
or, and, +, -, ¥ /, %, abs, acos, asin, atan, ceil, cos, exp, floor,
pow, log, random, round, sin, sqrt, tan, min, max, P, E, date,
serie, map, reduce, equal?, empty?, chars, charAt, substring,
length, first, rest, last, nth, replace, array.new, array, array.disp,
array.array?, array.null?, array.length, array.item, array.first,
array.last, array.rest, array.slice, array.concat, array.set!,
array.pushl, array.pop!, array.unshift!, array.shift!,
array.reverse!, array.sort!, cons, cons?, car, cdr, cons.disp,
list.new, list, list.disp, list.null?, list.length, list.reverse, list.first,
list.bultfirst, list.last, list.butlast, @, div, span, a, ul, ol, li, dl, df,
dd, table, tr, td, h1, h2, h3, h4, h5, h6, p, b, i, u, center, hr,
blockquote, sup, sub, del, code, img, pre, textarea, canvas,
audio, video, source, select, option, svg, line, rect, circle,
ellipse, polygon, polyline, path, text, g, mpath, use, textPath,
pattern, image, clipPath, defs, animate, set, animateMotion,
animate Transform, br, mailto, back, hide, input, script, style,
iframe, drag, note, note_start, note_end, show, lightbox,
minibox, editable, turtle, forum, lisp, long_mult, BN.DEC,
BN.new, BN.+, BN.-, BN.*, BN./, BN.%, BN.pow, BN.compare,
BN.negate, BN.abs, BN.intPart, BN.valueOf, BN.round, BN.fac,
SMART_ADD, HI, GOOD_DAY, CONS, CAR, CDR, BAR,
ZERO, ONE, TWO, THREE, FOUR, FIVE, CHURCH, SUCC,
ADD, MUL, POWER, PRED.PAIR, PRED, ITER.PAIR, ITER,
TRUE, FALSE, IF, ISZERO, FAC, Y, IFTHENELSE,
ALMOST_FAC, YFAC, FACT, TFAC.rec, TFAC,
Bl.bigint2pol.rec, Bl.bigint2pol, Bl.pol2bigint.rec, Bl.pol2bigint,
Bl.simplify.rec, Bl.simplify, Bl.pk, Bl.p+, Bl.p* Bl.tfac.r, Bl.tfac,
castel.interpol, castel.sub, castel.point, castel.build, svg.dot,
pO, p1, p2, p3, red_curve, green_curve, QUOTIENT, SIGMA,
PAREN, mul, spreadsheet, sheet.new, sheet.input,
sheet.output, TITLE, WRAP, ref, back_ref, space |

where can be seen the user defined functions starting at
SMART_ADD, the first constant created in the quick introduction.

In order to illustrate some of these capabilities we will write
effective recursive factorials, compute big numbers, play with
tabular data in a spreadsheet, explore intensive computing with
javascripts, build regular expressions based macros.

3.1.recursion

In the previous section we have seen how tricky it was to write a
recursive algorithm. We had to write manually a lazy behaviour.

Using the third {if bool then one else two} special
form and its built-in lazy evaluation the way is opened to efficient
recursive algorithms. It's now possible to write the factorial
function following its mathematical definition:

{def FACT
{lambda {:n}
{if {< :n 0}
then {b n must be positive!}
else {if {= :n 0} then 1
else {* :n {FACT {- :n 1}}}}}}}
-> FACT
{FACT -1} -> n must be positive!
{FACT 0} -> 1
{FACT 5} -> 120
{FACT 50} -> 3.0414093201713376e+64

Let's write the tail-recursive version:

{def TFAC
{def TFAC.rec
{lambda {:a :n}
{if {< :n 0}
then {b n must be positive!}
else {if {= :n 0} then :a
else {TFAC.rec {* :a :n} {- :n
{lambda {:n} {TFAC.rec 1 :n}}}
-> TFAC

1}}3131}}

{TFAC 5}
{TFAC 50}

-> 120
-> 3.0414093201713376e+64

The recursive part is called by a helper function introducing the
accumulator ":a". {lambda talk} doesn't know lexical scoping -
the TFAC.rec inner function is global - and this leads to some
pollution of the dictionary. The Y-combinator mentionned above,
making recursive an almost-recursive function, will help us to
discard this helper function. The Y-combinator and the almost-
recursive function can be defined and used like this:

{def Y
-> Y

{lambda {:f :a :n} {:f :f :a :n}}}

{def ALMOST FAC
{lambda {:f :a :n}

{if {< :n 0}

then {b n must be positive!}

else {if {= :n 0} then :a

else {:f :f {* :a :n} {- :n 1}}}}}}

-> ALMOST FAC

{Y ALMOST FAC 1 5}
-> 120

Because the Y-combinator can be applied to any other almost-
recursive function (sharing the same signature, for instance the
fibonacci function) we have reduced the pollution but we can do
better. Instead of applying the Y combinator to the almost
recursive function we can define a function composing both:

{def YFAC {lambda {:n}
{{lambda {:f :a :n}
{:f :f :a :n}}
{lambda {:f :a :n}
{if {< :n 0}
then {b n must be positive!}
else {if {= :n 0} then :a

else {:f :f {* :a :n} {- :n 1}}}}} 1

-> YFAC

{YFAC 5}

-> 120

{YFAC 50}

-> 3.0414093201713376e+64

{map YFAC {serie 0 20}}

-> 1 1 2 6 24 120 720 5040 40320 362880 3628800
39916800 479001600 6227020800 87178291200
1307674368000 20922789888000 355687428096000
6402373705728000 121645100408832000
2432902008176640000

It's fast but there is a last point to fix: {FAC 50}, {TFAC 50}
and {YFAC 50} return a rounded value
3.0414093201713376e+64 which is obvioulsly not the exact
value. We must go a little further and build some tools capable of
processing big numbers.

3.2. big numbers

The way the Javascript Math object is implemented puts the limit
of natural numbers to 2%, Beyond this limit last digits are rounded
to zeros, for instance, as we will demonstrate later, the four last
digits of 264 = {pow 2 64} = 18446744073709552000 should be
1616 and are rounded to 2000. And beyond 2%% natural numbers
are replaced by float numbers with a maximum of 15 valid digits.
In order to overcome this limitation we come back to the
definition of a natural number: A natural number apa;...a,, is the
value of a polynomial Z;_y"'aix" for some value of x, called the
base. For instance 12345 = 1*10%+2%10°+3%10°+4%10"+5%10°.
We build a set of user defined functions defining addition,
multiplication of polynomials and some helper functions:

{def BI.bigint2pol
{def BI.bigint2pol.rec
{lambda {:n :p :1}
{if {< :i 0}

then :p
else {BI.bigint2pol.rec
:n
{cons {charAt :i :n} :p} {- :i 1}}}}}
{lambda {:n}
{BI.bigint2pol.rec :n nil {- {chars :n} 1}}}}
-> BI.bigint2pol
{def BI.pol2bigint
{def BI.pol2bigint.rec
{lambda {:p :n}
{if {equal? :p nil}
then :n
else {BI.pol2bigint.rec
{cdr :p} {car :p}:n}}}}
{lambda {:p}
{let { {:qg {list.reverse :p}} }
{BI.pol2bigint.rec {cdr :qgq} {car :g}}}}}
-> BI.pol2bigint
{def BI.simplify
{def BI.simplify.rec
{lambda {:p :g :r}
{if {and {equal? :p nil} {= :r 0}}
then :g
else {if {equal? :p nil} then {cons :r :qg}
else {BI.simplify.rec
{cdr :p}
{cons {+ {% {car :p} 10} :r} :qg}
{floor {/ {car :p} 10}} }} }}}
{lambda {:p}

{BI.simplify.rec {list.reverse :p} nil 0}}}
-> BI.simplify
{def BI.pk
{lambda {:k :p}
{if {equal? :p nil}
then nil
else {cons {* :k {car :p}}
{BI.pk :k {cdr :p}}} }}}
-> BI.pk
{def BI.p+
{lambda {:pl :p2}
{if {and {equal? :pl nil} {equal? :p2 nil}}
then nil
else {if {equal? :pl nil} then :p2
else {if {equal? :p2 nil} then :pl
else {cons {+ {car :pl} {car :p2}}
{BI.p+ {cdr :pl} {cdr :p2} }}}}}}}
-> BI.p+
{def BI.p*
{lambda {:pl :p2}
{if {or {equal? :pl nil} {equal? :p2 nil}}
then nil
else {if {not {cons? :pl}}
then {BI.pk :pl :p2}
else {BI.p+ {BI.pk {car :pl} :p2}
{cons 0 {BI.p* {cdr :pl}
:p2t it}
-> BI.p*

On this set of functions we can now compute the factorial of
natural numbers of any size with an exact precision:

{def BI.tfac
{def BI.tfac.r {lambda {:n :p}
{if {< :n 1}
then :p
else {BI.tfac.r {- :n 1}
{BI.simplify
{BI.p* {BI.bigint2pol :n}
{lambda {:n}
{BI.pol2bigint
{BI.simplify

Pty

{BI.tfac.r :n {BI.bigint2pol 1}}}}}}
-> BI.tfac
{BI.tfac 50}

-> 304140932017133780436126081660647
68844377641568960512000000000000

We finally reached the goal: with the subset of special forms
[lambda, def, if],the cons and lists structures, a few
Math operators and without any external library we have
computed the exact value of 50! But we need to go a little further.

3.3. when {lambda talk} calls Javascript

Until now user defined functions were exclusively created in the
{lambda talk} syntax. With a large speed penalty when comes
intensive computation. We can write new functions in the
Javascript syntax inside {script ... Javascript code ...} forms.

When a set of user defined functions written in {lambda talk} or
Javascript syntaxes increazes in size, it's better to externalize it in
some other wiki page used as a library and called via a (require
library_name). This helps {lambda talk} to stay minimal,
coherent, orthogonal, and any user to create, add and maintain his

specific library. In the following we illustrate some of these
capabilities.

3.3.1. the lib_bignum library

Jonas Raoni Soares Silval®! has written a small (150 lines) and
smart Javascript library, BigNumber, ready to be called via
{lambda talk} wrapping functions, everything being stored in
another wiki page, 1ib bignum. We just write the factorial
function using the multiplicate operator BN. * redefined for big
numbers:

{def BN.fac
{lambda {:n}
{if {= :n 0}
then 1
else {BN.*
-> BN. fac

:n {BN.fac {- :n 1}}}}}}

and call it on the number 50:

{BN.fac 50}
-> 304140932017133780436126081660647
68844377641568960512000000000000

Obviously it's the fastest and best choice!

Note: Using this library, we can control that the value of 264 given
by the Javascript Math object, {pow 2 64} =
18446744073709552000 is not its exact value {BN.pow 2 64} =
18446744073709551616!

3.3.2. the lib_spreadsheet library

A spreadsheet is a good illustration of functional languages,
(Simon Peyton-Jones [0l A spreadsheet is an interactive
computer application for organization, analysis and storage of data
in tabular form. The basic idea is that each cell contains the input -
words and expressions - and displays the output. Calling a set of
Javascript and {lambda talk} functions stored in a wiki page,
lib spreadsheet, and writing {spreadsheet 4 5} displays the
following table of 5 rows and 4 columns of editable cells:

Editing cell L5C4:

{+{U -3 0}{U -2 0}{J -1 O}} P

NAME QUANT UNIT PRICE PRICE

Item 1 10 2.1 21

Item 2 20 3.2 64

Item 3 30 43 129
TOTAL [N

PRICE
[local storage]

Two specific functions are added for linking cells:

e {LC i j} returns the value of the cell L;Cy as an absolute
reference,

*{IJ i J} returns the value of the cell L ; C j1 as arelative
reference. For instance writing {IJ -1 -1} in L2C2 will
return the value of L1C1.

Datas are stored in the browser's localStorage. Let's test: click on
the [local storage] button, copy the code in the frame below, paste

javascript:LAMBDATANK.toggle_display('local_editor');

it in the local storage frame, click on the editor -> storage button,
confirm the action and analyze the spreadsheet's cells.

["{b NAME}","{b QUANT}","{b UNIT PRICE}","{b
PRICE}", "Item 1","10","2.1","(* {IJ 0 -2} {IJ 0
-1}}","Item 2","20","3.2","(* {IJ 0 -2} {IJ O
-1}}","Item 3","30","4.3","(* {IJ 0 -2} {IJ O
-1yy","","","{b TOTAL PRICE}","{+ {IJ -3 0} {IJ
-2 0} {IJ -1 0}}","4"]

3.3.3. graphics

The de Casteljau recursive algorithm[ll] allows drawing Bezier
curves of any degree, i.e controlled by any number of points.
Defining points as pairs and control polylines as lists, we build a
small set of {lambda talk} user defined functions feeding the
points attributes of SVG polylines:

{def castel.interpol {lambda {:p0 :pl :t}
{cons {+ {* {car :p0O} {- 1 :t}}
{* {car :pl} :t}}
{+ {* {cdr :p0} {- 1 :t}}
{* {cdr :pl} :t}}
P}
-> castel.interpol
{def castel.sub {lambda {:1 :t}
{if {equal? {cdr :1} nil}
then nil
else {cons
{castel.interpol {car :1} {car {cdr :1}} :t}
{castel.sub {cdr :1} :t}}}}}
-> castel.sub
{def castel.point {lambda {:1 :t}
{if {equal? {cdr :1} nil}
then {car {car :1}} {cdr {car :1}}
else {castel.point {castel.sub :1 :t} :t}}}}
-> castel.point
{def castel.build {lambda {:1 :a :b :d}
{map {castel.point :1} {serie :a :b :d}}}}

-> castel.build

{def svg.dot {lambda {:p}

{circle {@ cx="{car :p}" cy="{cdr :p}" r="5"
stroke="black" stroke-width="3"
fill="rgba (255,0,0,0.5)"}}})

-> svg.dot

For instance the following code:

{def p0 {cons 150 80}} -> pO
{def pl {cons 200 150}} -> pl
{def p2 {cons 50 250}} -> p2
{def p3 {cons 200 250}} -> p3
{def red curve {castel.build

{list {p0} {p1l} {p2} {pP3}}
-0.3 1.1 {pow 2 -5}}}

-> red_curve

{def green_curve {castel.build
{list {p2} {pl} {pP3}}
-0.1 0.6 {pow 2 -5}}}

-> green_curve

{svg.dot
{svg.dot
{svg.dot
{svg.dot

{pO0}}
{pl}}
{p2}}
{p3}}

{polyline {Q@ points="{red curve}"

stroke="red" fill="transparent”
stroke-width="3"}}

{polyline {@ points="{green_ curve}"
stroke="green" fill="transparent"
stroke-width="3"}}

draws a cute A in an SVG frame:

3.3 4. intensive computing

For intensive computing, it's obvioulsly more efficient to call the
underlying language, Javascript. These are screenshots of wiki

: o [12] inol13]
pages dedicated to ray-tracing,” ' curved shapes modeling' ",
fractals[l4], turtle graphics drawinglls].

N -
B 1
N 'f”,: .“L‘ e e

Zoom 10181 0, H0L07 40, 1001 <f 11 model i

1) load model JOM) render scene J
] Pipe—

3.3.5. mathML

3
. 0
mc2ay, - the Ea-— x,t
o o]8x]- pix,t)

The Dirac equation in the form originally proposed by Dirac

., 0
h_lg t) =
! at(x,)

{lambda talk} forgets the MathML markup set which is not
implemented in Google Chrome!'®. A set of functions,
exclusively built on standard HTML and CSS rules, can be
defined to render Math Symbols. For instance the above Dirac

equation is not a picture but the result of the code below:

i{del h}{QUOTIENT 30 9y 9t} (x,t) = {PAREN 3 (}
mc{sup 2}a{sub 0} - i{del h}c {SIGMA 30 j=1 3}
af{sub j}

{QUOTIENT 30 9 9x{sub j}}

{PAREN 3)} U (x,t)

calling three user defined {lambda talk} functions:

{def QUOTIENT
{lambda {:s
{table
{@ style="width::spx;
display:inline-block;
vertical-align:middle;
text-align:center;"}
{tr {td {@ style="border:0 solid;
border-bottom:1lpx

:num :denom}

solid; "} :num}}
{tr {td {@ style="border:0 solid;"}:denom}}
-> QUOTIENT

IS

{def SIGMA
{lambda {:s
{table
{@ style="width: :spx;
display:inline-block;
vertical-align:middle;
text-align:center;"}
{@ style="border:0 solid;"}:two}}
{@ style="border:0 solid;
font-size:2em;
line-height:0.7em;"}3}}
{@ style="border:0 solid;"}:one}}

:one :two}

{tr {td
{tr {td

{tr {td
-> SIGMA

b1}

{def PAREN
{lambda {:s :p}
{span {@ style="font:normal :sem arial;
vertical-align:-0.15em;"}:p}}}
-> PAREN

3.4.what about macros?

A language without macros is not a "true" language, isnt'it?
{lambda talk} macros bring (a little bit of) the power of regular
expressions directly in the language.

34.1. make it variadic

{lambda talk} comes with some variadic primitives, for instance
[+, -, *, /, 1list, ...].Butat firstsight, user functions
can't be defined variadic, for instance:

{def mul {lambda {:x :y} {* :x :y}}} -> mul
{(* 1 2 3 4 5} -> 120 // * is variadic
{mul 1 2 3 4 5} -> 2 // 3, 4, 5 are
ignored

In order to make mul variadic we glue values in a list and define
an helper function, variadic:

{def wvariadic

{lambda {:f :args}
{1if {equal? {cdr :args} nil}
then {car :args}
else {:f {car :args}
{variadic :f {cdr :args}}}}}}

-> variadic

{variadic mul {list 1 2 3 4 5}}
-> 120

But it's ugly and doesn't follow a standard call. We can do better
using a macro:

1) defining:
{macro {mul* (.*?)}
to {variadic mul {list €1}}}

2) using:
{mul* 1 2 3 4 5}
-> 120

Now mulx is a variadic function which can be used as any other
primitive or user function, except that it's not a first class function,
as in most Lisps.

3.4.2.titles, paragraphs & links

As a last example, {lambda talk} comes with a predefined small
set of macros allowing writing without curly braces titles,
paragraphs, list items, links:

_hl TITLE -
stands for: {(hl TITLE}
_p Some paragraph ... -
stands for: {p Some paragraph ...}

[[PIXAR|http://www.pixar.com/]]
stands for: {a {@
href="http://www.pixar.com/" }PIXAR}

[[sandbox]]
stands for: {a {@ href="?
view=sandbox" }sandbox}

These simplified alternatives, avoiding curly braces as much as
possible, are fully used in the current document.

CONCLUSION

{lambda talk} takes benefit from the extraordinary power of
modern web browsers, simply adding a coherent and unique
syntax, without re-inventing the wheel, just using existing tools,
HTML/CSS, the DOM and Javascript. Standing on the shoulders
of such giants, {lambda talk} can be built as a minimal regexp
based implementation of the A-calculus, where the repeated
substitutions inside the code string overcomes limitations of
regular language, where the lack of closure is balanced by the
built-in partial application, where a dictionary initially empty can
be extended "inline" via user defined libraries. More can be seen
in the following APPENDICE.

The {lambda way} project is a thin overlay - under 100kb - built
upon any modern browser, proposing a small interactive

development environment, {lambda tank}, and a coherent
language, {lambda talk}, without any external dependencies and
thereby easy to download and install on a web account provider
running PHP. From any web browser on any system, complex web
pages can be created, enriched, structured and (algorithms) tested
in real time on the web. The current document has been created in
this wiki page,
http://lambdaway.free.fr/lambdaway/?
view=oxford then directly printed from the browser as a PDF
document.

Alain Marty, 2017/06/12
APPENDICE

In this section we present the minimal set of JavaScript functions
necessary and sufficient to implement abstractions,
applications, definitions and the ifthenelse
control structure.

1. evaluation

Working on the client side the {lambda talk} evaluator is a
Javascript IIFE (Immediately Invoked Function Expression),
LAMBDATALK, returning the public function eval(). This
function is called at every keyboard entry and replaces the string
code by its evaluation, without building any Abstract Syntaxic
Tree.

var LAMBDATALK = (function() {
var eval = function(str) {
str = pre processing(str);
str = abstract lambdas(str); // abstraction

str = abstract defs(str); // abstraction
// some other special forms
str = eval forms(str); // application

str = post processing(str);
return str;

bi

return {eval:eval}

IDNON

2. application

In a single loop, using a single regular expression[m, simple
forms {first rest} are recursively evaluated from the leaves
to the root and replaced by words. The evaluator stops when
simple forms are reduced to a sequence of words, actually a valid
HTML code sent to the browser's engine for the final evaluation
and display. Using a regular expression based window, the
evaluator literally loops over the code string, skips the words and
progressively replaces in situ forms by words. The repeated
substitutions inside the code string overcomes limitations of
regular language. A kind of Turing machinel'8) ...

var eval forms = function(str) {

while (str !=
(str=str.replace(leaf,eval leaf)))

; // does nothing!

return str
}i
var leaf = /\{(["\s{}]1*%) (2:[\s]*) (["{}1*)\}/qg;
var eval leaf = function(,f,r) {

return7(DICT.hasOwnProperty(f)) ?

DICT[f] .apply(null, [r]) = " ('"+£+'
[N
bi
var DICT = {}; // initially empty

3. abstraction

Special forms {lambda {arg*} body} are matched and
evaluated before simple forms and replaced by a reference to an
anonymous function added to the dictionary. The following code
demonstrates that:

¢ 1) lambdas are first class functions,

¢ 2) lambdas accept partial function application, when called
with a number of values lesser than their arity, they memorize
the given values and return a lambda waiting for the rest,

¢ 3) lambdas don't create closures, inner lambdas have no
access to outer lambdas' arguments, there is no lexical
scoping, no environment, no free variables. Like mathematical

functions lambdas are pure black boxes.

var abstract lambdas = function(str) {
while (str !== (str =
form replace(str,'{lambda',
abstract lambda)));
return str

}i

var abstract lambda = function(s) {
s = abstract lambdas(s); // nested lambdas
var index = s.indexOf('}"),
args = supertrim(s.substring (1,
index)) .split (' "),
body = s.substring(index+2).trim(),
name = ' LAMB ' + LAMB num++,
reg args = [];
for (var i=0; i < args.length; i++)
reg args([i] = RegExp(args[i], 'g'):
body = abstract ifs(body); // {ifthenelse}
DICT[name] = function() {

var vals =
supertrim(arguments[0]) .split (' ");

return function (bod) {

bod = ifthenelse(bod, reg args, vals);

if (vals.length < args.length) {

for (var i=0; i < wvals.length; i++)

bod = bod.replace(reg args[i],vals[i]);
var _args=args.slice(vals.length).join("' ");

bod = '"{' + args + '} ' + bod;

bod = abstract lambda (bod) ; // return a
lambda

} else { // return a form

for (var i=0; i < args.length; i++)
bod = bod.replace(reg _args[i],vals[i]);
}
return bod;
} (body) ;7
}i
return name;

}i

var form replace = function(str,sym, func, flag) {

sym += "' ';
var s = catch form(sym, str);
return (s==='none')?

str:str.replace (sym+s+'}"', func(s, flag))
}i

var catch form = function(symbol, str) ({
var start = str.indexOf(symbol);
if (start == -1) return 'none';

var d0, d1, d2;

http://lambdaway.free.fr/lambdaway/?view=oxford

if (symbol === "'{") { d0=1; dil=1; d2=1; }
else if (symbol === "{") { d0=0; d1=0; d2=1; }
else { d0=0; dl=symbol.length; d2=0; }
var nb = 1, index = start+d0;
while(nb > 0) { index++;
if (str.charAt (index) == "{') nb++;

else if (str.charAt(index) == '}') nb--;
}
return str.substring(start+dl, index+d2)

}i

4. definition

Special forms {def name expression} are matched and
evaluated before simple forms and replaced by name as a
reference to expression added to the dictionary.

var abstract defs = function(str, flag) {
while (str !== (str =
form replace(str, '{def', abstract def,
flag))) 7
return str
bi
var abstract def = function (s, flag) {
flag = (flag === undefined)? true false;
s = abstract defs(s, false);
var index = s.search(/\s/), // match spaces &
cr
name = s.substring(0, index).trim(),
body = s.substring(index) .trim();
if (body.substring(0,6) === ' LAMB ') {
DICT [name] = DICT [body];
delete DICT[bodyl];
} else {
body = eval forms (body) ;
DICT[name] = function() { return body };
}
return (flag)? name : '';

}i

5. ifthenelse

Special forms {if bool then one else two} are
matched in lambda's bodies and replaced by the reference to an
array [bool, one, two]. When the lambda is called with
some values, one or two is returned according to the bool value.

var abstract ifs = function(str) {
while (str !== (str =

form replace(str, '{if', abstract if))) ;
return str
bi
var abstract if = function(s) {
s = eval _ifs(s);
var name = ' COND ' + COND num++;
var indexl = s.indexOf('then'),
index2 = s.indexOf('else'),
bool = s.substring (0, indexl) .trim(),
one =

s.substring (indexl1+5,index2) .trim(),
two = s.substring(index2+5) .trim();
COND[name] = [bool,one,two];
return name;

}i

var eval ifs = function(bod, reg args, vals) {
var m = bod.match(/ COND \d+/);
if (m === null) {

return bod

} else {

var name = m[0];

var cond = COND[name];

if (cond === undefined) return bod;

var bool=cond[0], one=cond[1l], two=cond[2];

if (reg_args !== undefined) {

for (var i=0; i < vals.length; i++) {
bool = bool.replace(reg args[i],

vals[i]);

one = one.replace(reg args[i], vals[i]);
two = two.replace(reg args[i], vals[i]);
}

}

var boolval = (eval forms (bool)==="true')?

one two;
bod = bod.replace(name, boolval);
return eval ifs(bod, reg args, vals)

REFERENCES

[1] Wiki: https://en.wikipedia.org/wiki/Wiki

[2] Ward Cunningham:
http://ward.asia.wiki.org/view/testing-microtalk
[3] A Tutorial Introduction to the Lambda
Calculus (Raul Rojas): http://www.inf.fu-
berlin.de/lehre/WS03/alpi/lambda.pdf

[4] Lisp:
http://www.cs.utexas.edu/~cannata/cs345/Class%20
Notes/06%20Lisp.pdf

[5] Scheme: https://mitpress.mit.edu/sicp/full-
text/book/book.html

[6] Collected Lambda Calculus Functions:
http://jwodder.freeshell.org/lambda.html

[7] Stephen Cole Kleene:
https://en.wikipedia.org/wiki/Stephen Cole Kleen
e

[8] L. Peter Deutsch
https://fr.wikipedia.org/wiki/L. Peter Deutsch
https://sites.google.com/a/gertrudandcope.com/in
fo/Publications/Patterns/C--Report/SpaceIll

[9] Jonas Raoni Soares Silva
http://jsfromhell.com/classes/bignumber

[10] Simon Peyton Jones:
https://en.wikipedia.org/wiki/Simon Peyton Jones
[11] De Casteljau's algorithm:
https://en.wikipedia.org/wiki/De Casteljau's alg
orithm

[12] raytracing:
http://epsilonwiki.free.fr/lambdaway/?
view=raytracing

[13] pForms:
http://epsilonwiki.free.fr/lambdaway/?
view=pforms

[14] fractal:
http://epsilonwiki.free.fr/lambdaway/?
view=mandel

[15] turtle:
http://epsilonwiki.free.fr/lambdaway/?
view=lambdatree

[16] google-subtracts-mathml-from-chrome:
https://www.cnet.com/news/google-subtracts—
mathml-from-chrome-and-anger-multiplies/

[17] Regular Expressions:
http://blog.stevenlevithan.com/archives/reverse-
recursive-pattern

[18] Turing
http://epsilonwiki.free.fr/lambdaway/?
view=turing

{h way?} v.20170514

http://ward.asia.wiki.org/view/testing-microtalk
http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf
http://www.cs.utexas.edu/~cannata/cs345/Class%20Notes/06%20Lisp.pdf
https://mitpress.mit.edu/sicp/full-text/book/book.html
http://jwodder.freeshell.org/lambda.html
https://en.wikipedia.org/wiki/Stephen_Cole_Kleene
https://fr.wikipedia.org/wiki/L._Peter_Deutsch
https://sites.google.com/a/gertrudandcope.com/info/Publications/Patterns/C--Report/SpaceIII
http://jsfromhell.com/classes/bignumber
https://en.wikipedia.org/wiki/Simon_Peyton_Jones
https://en.wikipedia.org/wiki/De_Casteljau's_algorithm
http://epsilonwiki.free.fr/lambdaway/?view=raytracing
http://epsilonwiki.free.fr/lambdaway/?view=pforms
http://epsilonwiki.free.fr/lambdaway/?view=mandel
http://epsilonwiki.free.fr/lambdaway/?view=lambdatree
https://www.cnet.com/news/google-subtracts-mathml-from-chrome-and-anger-multiplies/
http://blog.stevenlevithan.com/archives/reverse-recursive-pattern
http://epsilonwiki.free.fr/lambdaway/?view=turing
http://lambdaway.free.fr/

