lambdaway
::
funstacker2
2
|
list
|
login
|
load
|
|
_img https://defeo.lu/M1-AlgoProg/tds/NPI.jpg {macro \/\/ ([^\n]*)\n to
// €1
} _h1 stacker {sup [[array|?view=funstacker]] | list | [[next...|?view=funstacker3]] } _p We evaluate expressions in [[reverse polish notation|https://fr.wikipedia.org/wiki/Notation_polonaise_inverse]], {b here using lists} and displaying the successive states of the stack. We give in blue the equivalent lambdatalk expressions, in a direct prefixed parenthesized notation. _ul the example on top of this page {pre '{calc 1 2 + 4 * 3 +} // '{+ 3 {* 4 {+ 1 2}}} -> {calc 1 2 + 4 * 3 +} } _ul the four operators {b + - * /} {pre '{calc 3 4 +} // '{+ 3 4} -> {calc 3 4 +} '{calc 3 4 -} // '{- 3 4} -> {calc 3 4 -} '{calc 3 4 *} // '{* 3 4} -> {calc 3 4 *} '{calc 3 4 /} // '{/ 3 4} -> {calc 3 4 /} } _ul the pythagora formula {pre '{calc 3 3 * 4 4 * + sqrt} // '{sqrt {+ {* 3 3} {* 4 4}}} -> {calc 3 3 * 4 4 * + sqrt} } _ul computing the factorial of 6, to be compared with the standard recursive code {pre '{calc 6 5 4 3 2 1 * * * * *} // '{* 6 {* 5 {* 4 {* 3 {* 2 1}}}}} -> {calc 6 5 4 3 2 1 * * * * *} } _ul computing the factorial of 6, to be compared with the tail-recursive code {pre '{calc 6 5 * 4 * 3 * 2 * 1 *} -> {calc 6 5 * 4 * 3 * 2 * 1 *} } _p Following the task in [[rosettacode.org|http://rosettacode.org/wiki/Parsing/RPN_calculator_algorithm#Lambdatalk]] {pre '{calc 3 4 2 * 1 5 - 2 3 pow pow / +} // -> {calc 3 4 2 * 1 5 - 2 3 pow pow / +} // '{+ {/ {pow {pow 3 2} {- 1 5}} {* 2 4}} 3} + / \ div 3 / \ / \ pow + / \ / \ pow \ 2 4 / \ \ 3 2 - / \ 1 5 } _ul the golden ratio φ {pre '{calc 1 5 sqrt + 2 /} // '{/ {+ 1 {sqrt 5}} 2} -> {calc 1 5 sqrt + 2 /} } _ul computing in a local context the positive root of {code ax{sup 2} + bx + c = 0}, {code x = (-b + √(b{sup 2}-4ac))/2a}, for {code a=1, b=-1, c=-1} {pre ;; x = '{/ {+ {- b} {sqrt {- {pow b 2} {* 4 {* a c}}}}} {* 2 a}} '{let { {:a 1} {:b -1} {:c -1} } {calc :b -1 * :b 2 pow 4 :a * :c * - sqrt + 2 :a * /} } -> {let { {:a 1} {:b -1} {:c -1} } {calc :b -1 * :b 2 pow 4 :a * :c * - sqrt + 2 :a * /} } } _ul and so on... _h2 the calc function _p The {b calc} function is built on 3 lambdatalk primitives {b cons, car, cdr} and 5 user defined functions {b unop?, binop?, list, empty?, disp} {pre '{def calc {def calc.r {lambda {:x :s} {if {empty? :x} then -> {b {car :s}} else {car :x}: {disp :s}{br} // optional, used to display steps {calc.r {cdr :x} {if {unop? {car :x}} then {cons {{car :x} {car :s}} {cdr :s}} else {if {binop? {car :x}} then {cons {{car :x} {car {cdr :s}} {car :s}} {cdr {cdr :s}}} else {cons {car :x} :s}} }}}}} {lambda {:s} {calc.r {list :s} nil}}} -> {def calc {def calc.r {lambda {:x :s} {if {empty? :x} then -> {b {car :s}} else {car :x} : {disp :s}{br} {calc.r {cdr :x} {if {unop? {car :x}} then {cons {{car :x} {car :s}} {cdr :s}} else {if {binop? {car :x}} then {cons {{car :x} {car {cdr :s}} {car :s}} {cdr {cdr :s}}} else {cons {car :x} :s}} }}}}} {lambda {:s} {br} {calc.r {list :s} nil}}} } _p Comparing this code with this [[Racket code|https://beautifulracket.com/funstacker/source-listing.html]] - which works with two binary operators [{b +, *}] only - can help to accept the accumulation of parentheses so typical of LISP dialects. IMHO. _p The {b unop?} & {b binop?} functions are used to test an extensible set of unary and binary operators {pre '{def unop? {lambda {:op} {or {W.equal? :op sqrt} // n sqrt sqrt(n) {W.equal? :op exp} // n exp exp(n) {W.equal? :op log} // n log log(n) {W.equal? :op cos} // n cos cos(n) ... and so // ... }}} -> {def unop? {lambda {:op} {or {W.equal? :op sqrt} {W.equal? :op exp} {W.equal? :op log} {W.equal? :op cos} }}} '{def binop? {lambda {:op} {or {W.equal? :op +} // m n + m+n {W.equal? :op -} // m n - m-n {W.equal? :op *} // m n * m*n {W.equal? :op /} // m n / m/n {W.equal? :op %} // m n % m%n {W.equal? :op pow} // m n pow m^n ... and so on // ... }}} -> {def binop? {lambda {:op} {or {W.equal? :op +} {W.equal? :op -} {W.equal? :op *} {W.equal? :op /} {W.equal? :op %} {W.equal? :op pow} }}} } _p A more general way to deal with operators can be seen in the [[next...|?view=funstacker3]] page. _p The {b list, empty?, disp} functions are used to create a list from a string, test its emptynes and display it. {pre '{def list {lambda {:s} {if {S.empty? {S.rest :s}} then {cons {S.first :s} nil} else {cons {S.first :s} {list {S.rest :s}}}}}} -> {def list {lambda {:s} {if {S.empty? {S.rest :s}} then {cons {S.first :s} nil} else {cons {S.first :s} {list {S.rest :s}}}}}} '{def empty? {lambda {:x} {W.equal? :x nil}}} -> {def empty? {lambda {:x} {W.equal? :x nil}}} '{def disp {def disp.r {lambda {:l} {if {empty? :l} then else {car :l} {disp.r {cdr :l}}}}} {lambda {:l} ({disp.r :l})}} -> {def disp {def disp.r {lambda {:l} {if {empty? :l} then else {car :l} {disp.r {cdr :l}}}}} {lambda {:l} ({disp.r :l})}} } _h2 conclusion _p It's important to note that everything - except {b list} - was {b exclusively} built on {b 5} lambdatalk primitives, {b cons, car, cdr}, to create lists, {b W.equal?} which test the equality between two words, and the {b or} boolean function. The {b list} function, which is useful but optional, uses 3 lambdatalk primitives dealing with sentences, {b S.empty?, S.first & S.rest}. _p Finally using {b immutable lists} instead of [[mutable arrays|?view=funstacker]] leads to a more homogeneous and elegant code. _p The LISP way, "{i Lot of Insane and Silly Parentheses}", is great. _p {i alain marty 2022/05/20-22} _p [[HN|https://news.ycombinator.com/item?id=31455491]] _h2 post scriptum _p {i At the end of the 70's I bought a (very expensive) HP67 and discovered the inverse Polish notation, "1 2 +". Much later I came across LISP and discovered prefixed parenthesized expressions, '{+ 1 2}, i.e. direct polish notation with parentheses. Then I discovered that an HTML expression like "{code <{span}b><{span}i><{span}u>Hello World<{span}/u><{span}/i><{span}/b>}", requiring that closed brackets be written in the reverse order, would be better written in a LISP style, {b '{b {i {u Hello World}}}}, without boring anymore with the order of closing brackets. Finally I found that if writing '{b 1 2 3 4 5 6} displayed "{b 1 2 3 4 5 6}" in bold, writing '{* 1 2 3 4 5 6} displayed the product, "720", and writing '{b {* 1 2 3 4 5 6}} displayed "{b 720}" in bold. Mixing pure text and active code to style it and make it "dynamic" had became obvious. _p This made me want to write a programming language and its current state is in the [[lambdaway project|?view=start]].} {style pre { box-shadow:0 0 8px #000; padding:10px; } }
lambdaway v.20211111