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Abstract
Two points of a Euclidean space can always be connected by the simplest of the curves, the straight line. This curve
is unique (it’s required), with a constant direction and a minimal length between the two points. The straight line
is known to be fundamental in the building of the Euclidean geometry, for the production of all imaginable figures,
from the simple triangle to the most complex curved shapes. And when the figures have to be immersed in curved
shapes, out of a Euclidean space and without its useful straight line tool, it seems natural to search for a similar
fundamental curve possessing its basic properties : uniqueness of the curve, constant direction, minimal length.
This curve, known to be a geodesic line, is defined by a differential system whose solutions cannot generally be
expressed in a simple way, (let’s say as a finite degree polynomial expression), and so leads to a great complexity
in the definition of figures belonging to curved spaces. But other approachs exist...
The present contribution, based on a conceptual tool for creating and managing curved shapes, the Pascalian
Forms, or pForms, (published in Editions de l’Esperou / Montpellier / 2004), an attempt to generalize the de
Casteljau algorithm, focuses on three cases of "straight lines" drawn on curved shapes :
1) the first case shows how a geodesic can be the solution to a very practical problem : applying a long thin plank
on a toroidal roof upon a swimming pool ;
2) the second case shows how an apparently complex spatial curve (the Threefoil Knot Curve) followed by a
staircase in the MC Escher style can be simplified by using immersed pSegments ;
3) the third case shows how the natural/organic shapes in the Sagrada Familia Temple dreamed by the catalan
architect A. Gaudi have been mastered using ruled surfaces (pSurfaces).

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Curved Shapes Genera-
tion

1. The pForms, basics

The approach chosen in Pascalian Forms enlightens a spe-
cial family of curved shapes, the pForms, built in an affine
space (without metric) of any dimensions (actually limited
to 4) ; pCurves, pSurfaces, pVolumes are easy to define and
manage with a small number of operators, the most funda-
mental of them simply returning the middle of two points.
With this operator used recursively, it is obvious to build
segments (Figure 1), hyper-paraboloids (Figure 2), twisted
cubes (Figure 3), hypercubes, and so on.

1.1. A hyperbolic paraboloid (pS22) and its diagonal
path (pL3)

Some experiences can be done on this first family of re-
cursive multilinear shapes. It is easy to split a hyperbolic

paraboloid (called pS22 to be short) in four equals sub pS22,
and to do it again recursively along a diagonal path (Figure
4, left). Linked to the 4 controling points (p00,p01,p10,p11)
of the pS22, we can consider 3 new points (p0,p1,p2), (Fig-
ure 4, right) :

p0 = p00,

p1 = (p01+ p10)/2,

p2 = p11.

build their middle :

pM = (p0+2∗ p1+ p2)/4

and do it again recursively, according to the de Casteljau
algorithm, (Figure 5). Embedded in the pS22, the diagonal
path can be considered as a straight line (ipL2/pS22), or as
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Figure 1: two points lead to a segment (pL2)

Figure 2: two segments lead to a hyperbolic paraboloid
(pS22)

a parabola (pL3) from the point of view of the embedding
space in which is defined the pS22.

1.2. A ruled paraboloid (pS32) and its diagonal path
(pL4)

In the same way that we have built a hyperbolic paraboloid
(pS22) from 2 segments (pL2), we can now build a ruled
paraboloid (pS32) from 2 parabolas (Figure 6, top left) or
from 3 segments (Figure 6, top right) and draw a diagonal
path . The diagonal path is a 4-controlled points curve (pL4),
known as a cubic curve, whose control points are linked to

Figure 3: two hyperbolic paraboloid lead to a twisted cube
(pV222)

Figure 4: the diagonal path on a pS22 is a parabola (pL3)

the control points of the 2 parabolas in this way (Figure 6,
bottom) :

p0 = p00,

p1 = (2∗ p01+ p10)/3,

p2 = (p02+2∗ p11)/3,

p3 = p12.

and the middle point is expressed like this :

pM = (p0+3∗ p1+3∗ p2+ p3)/8

The cubic (pL4) is the first true spatial curve (Figure 7, left)
and can be viewed as the diagonal curve of the diagonal sur-
face (pS32) of a twisted cube (pV222).

1.3. A pS33 and its diagonal path (pL5)

We will now build another surface from 3 parabolas (pS33),
and draw a diagonal path (Figure 8). The diagonal path is
a 5-controlled points curve (pL5), whose control points are
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Figure 5: the de Casteljau algorithm

Figure 6: a ruled paraboloid (pS32) from 2 pL3 or from 3
pL2, the diagonal path is a cubic curve (pL4), its 4 control
points from the pS32

linked to the 9 control points of the 3 parabolas in this way
(Figure 9) :

p0 = p00,

p1 = (p01+ p10)/2,

p2 = (p02+4∗ p11+ p20)/6,

p3 = (p12+ p21)/2,

p4 = p22.

Figure 7: the cubic shown in a cube, and as the second
diagonal of a twisted cube.

and the middle point is expressed like this :

pM = (p0+4∗ p1+6∗ p2+4∗ p3+ p4)/16

Figure 8: three parabolas lead to the simplest double
curved surface (pS33) and to a very useful curve (pL5)

Figure 9: building a pS33 and the 5 control points of its
diagonal path
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1.4. The pForms

On the first family of recursive multilinear shapes, we have
built new shapes (curves, surfaces, ...) and have enlighted
the expression of the middle point of the diagonal paths of a
pS22, a pS32, a pS33 :

pM = (p0+ p1)/2 (the middle of 2 points)

pM = (p0+2∗ p1+ p2)/4

pM = (p0+3∗ p1+3∗ p2+ p3)/8

pM = (p0+4∗ p1+6∗ p2+4∗ p3+ p4)/16

which leads to the general expression of the middle of n
forms (points, surfaces, volumes, ...) :

Fm =
n

∑
i=0

Ci
n−1×F i/2n−1

with : Ci
n =

n!
i!× (n− i)!

based on the Pascal’s triangle coefficients. It is not surprising
at all, all these forms are nothing but instances of well known
Bezier shapes whose polynomial expressions use such coef-
ficients ! But there are some good reasons to forget Bezier
shapes, and to call them pascalian forms (or pForms to be
short), pCurves, pSurfaces, pVolumes, pHyperVolumes. A
first reason is the way they are built, grace to the strong link
between the shapes and their diagonal paths, the shapes are
built using the middle operator (product) to go up in dimen-
sion, or using the diagonal operator (divide), to go down in
dimension. A second reason is that using recursive call of a
the middle operator avoids boring analytic expressions used
to define Bezier shapes : a Bezier volume is defined by a
triple cartesian product of polynoms, a pVolume is the result
of the middle operator applied recursively to a set of pSur-
faces. But there is a more important reason to do this...

1.5. Immersions

The diagonal path links 2 opposites corners of a pSurface,
but any 2 points in a pSurface can be connected in the same
way : stretching up or down the pSurface to fit with these 2
points brings back to the previous case. The result is that we
have got a way to define an unique curve connecting 2 points
in a pSurface ; we call it an immersed segment (or iSegment
or ipL2/pSurface) ; this pCurve becomes the fundamental
element to build some geometry in the pSurfaces, and more
generally in pForms of any dimensions. A first idea will be
to define pPolylines, pTriangles, regular polygons and, when
the number of sides grows to the infini, to define pCircles
embedded in pSurfaces. Another better idea will be to define
pCurves as we do in the space. For instance, with 3 points
in a hyperbolic paraboloid (pS22), it is obvious to build an
immersed parabola (ipL3/pS22), using nothing but basic re-
cursives operations returning the middle point of immersed
segments (Figure 10). More’over, it can be shown that in the
most general case, a pForm immersed in an other pForm is

Figure 10: three points in a pSurface lead to an immersed
parabola (ipL3/pS22)

a pForm of the initial space. This is a fundamental result
leading to powerful properties. For instance, considering the
special case of curves in surfaces, a pCurve controlled by p
points embedded in a pSurface controlled by [m,n] points is
still a pCurve of the space controlled by N points according
to this formula :

N = (m+n−2)∗ (p−1)+1

For instance, in a pS33, we find again that an immersed seg-
ment (ipL2) is a pCurve controlled by (3+3-2)*(2-1)+1 = 5
points (pL5) ; a parabola (pL3) will be a pCurve controlled
by (3+3-2)*(3-1)+1 = 9 points (pL9) (Figure 11, left), and
a cubic curve (ipL4) will be a pL13 (Figure 11, right). The

Figure 11: ipL3/pS33 = pL9 ; ipL4/pS33 = pL13

pForms cover a great family of forms whose (hidden) ana-
lytical expressions are complex cartesian products of poly-
nomial expressions. Using the pForms approach, it becomes
quite easy to draw some geometry in such shapes (Figure
12). We have now to remember that the useful revolving sur-
faces can’t be expressed as polynomials expressions, and we
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Figure 12: some examples pf immersions and pForms

have to do a little extra work to see them as pSurfaces, be-
ginning with the circle.

2. The pForms, conics

The question is to see how a pCurve and a pSurface can be
defined to represent respectively a circle and revolving sur-
faces, such as a torus. The parametric equation of a circle
[cos(t), sin(t)] is irreducible to a vectorial polynom of fi-
nite degree, and it seems that no combination of points exists
leading a pCurve to be the exact definition of a circle needed
by CAD systems. The Theory of Conics shows that the in-
tersection of a circular based cone and a plane parallel to a
straight line on the cone is a parabola ; hence, with a special
choice of three points of the R3 space, a parabola (pL3) will
project on a plane (R2) as a perfect arc of a circle. According
to this, we will define pForms in the R4 space and get their
projections in our R3 space. Coming back to the circle, we
have to go a little further. We have got a solution to a good
quarter of the circle (Figure 13, top left), but it appears that
the extension to the entire circle (360ř) uses an inappropri-
ate infinite interval. Happily, beyond parabolas, other curves
can be defined on a torus projecting as an arc of a circle,
and a good choice is the 5 points controlled pCurve (pL5)
we have already seen as a pS33’ diagonal, (Figure 13, bot-

Figure 13: pL3, pL4 and pL5 in a 4-dimensional space lead
to true circles arcs

tom left) ; this curve is projected as a true semi-circle and its
extension to the entire circle is done in a reduced interval [-
k,1+k] with k=sqrt(2)/2=0.707, producing a good repartition
of the points on the curve. With such a well defined pCir-
cle (belonging now to the family of pCurves), it becomes
possible to build true and complete revolving pSurfaces, for
instance a pTorus, in which it will be possible to define im-
mersed pSegments and, why not, immersed pCircles which
are nothing but pCurves of the space (Figures 14 and 15).
Beyond these basic shapes, pForms can be used as compo-

Figure 14: revolving surfaces (pS33 in R4) and their diag-
onals (pL5)
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nents of useful linear combinations : concatenations lead to
splines (uniform or non uniform B-splines), and to NURBS
(we are working in R4 space) ; with special linear combina-
tions it is possible to build Coons pSurfaces (pS1+pS2-pS3)
; pVolumes can be used to bend and to twist in a global way
pCurves and pSurfaces. Because of the non metric definition
of all the pForms, a complete operative geometry in curved
spaces can be built upon them. The pForms can be used as
this, and as basis in the approximation of complex mathe-
matical or physical and natural shapes, giving an operative
and intuitive tool allowing their analysis. It is what we are
going to show for three cases in the real world.

Figure 15: immersed ina pTorus, pencil of pSegments, con-
centric pCircles and a red pCircle with some yellow rays

3. Geodesical arcs on a swimming pool

The first case shows how a geodesic can be the solution of
a very practical problem : applying a long thin plank on a
curved surface. This problem came in the definition of a roof
upon a public circular swimming pool in St Quentin in Yve-
lines (France), taken in charge by the engineer agency of
Michael Flach specialized in wooden structures. The struc-
tural principle developed by this engineer is quite elegant
and a priori simple : long thin planks (45mm/250mm) are
alternaltively stacked to constitute arcs of a great inertia (8

planks giving an arc of section 360mm/250mm) perpendic-
ular to the surface to be created, allowing an easy cross-
ing of two families of these arcs without extra problems on
knots, the whole becoming a hyperstatic mesh on which the
thin plates of the roof can be layered (Figure 17). The lit-
tle residual problem remaining was indeed to lay these long
thin planks on a curved shape following curves perpendicu-
lar to the surface, and to give some help to the carpenter to
do the job on the site. Immersed segments are (generally) not
curves whose principal normal is perpendicular to the sur-
face. Geodesic lines have this property, but their definition
need to resolve a complex set of partial differential equa-
tions. A short insight will help to understand. A point M of

Figure 16: pencils of geodesic lines on a torus, with and
without normals ; study of the toroidal roof, geodesical arcs
with and without normals

a surface is defined by these expressions (input) :

M(u,v) = [x(u,v),y(u,v),z(u,v)] with : u,v in [0,1]

known as parametric equations of the surface. This point M
can alternatively be seen as belonging to a curve embedded
in the surface, following this parametric expression to find
(output) :

M(t) = [u(t),v(t)] with : t in [0,1]

The first derivative (speed) of M(t) related to the variable
t can be expressed with the two partial derivatives (tangent
vectors) at the point M(t) of the surface :

dM/dt = ∂M/∂u ∗du/dt +∂M/∂v ∗dv/dt

or shortly :

M′ = ∂uM.u′+∂vM.v′
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We compute the second derivative (acceleration) :

M” = dM′/dt

= d(∂uM′.u′+∂vM′.v′)/dt

= ∂uM ∗u”+∂vM ∗ v”

+∂
2
uuM ∗u′2 +2∗∂

2
uvM.u′.v′+∂

2
vvM.v′2

and we express the orthogonality of the tangent vectors and
the acceleration vector by zeroing their dot product :

M”∗∂uM = 0,

M”∗∂vM = 0

This is the partial differential system whose solution is a
geodesic line (Figure 16). Unfortunaltely, there is no known

Figure 17: realization, outside and inside

general solution to this problem and it is necessary to pro-
ceed in an iterative way. The algorithm used to find the
geodesics leads to a set of points, which is not a well de-
fined curve as can be the pCurves : the solution is nothing
but a terminal object, which can’t be used as a tool to build
new geometrical shapes, as it can be done with immersed
segments or other pForms. We go straight away on a sur-
face, but blindly and in a quite chaotic way (as it can be seen
on the Figure 16, top). It could be interesting to see how im-
mersed segments can be a good basis to simplify the analyze
of geodesics ; the question is opened.

Figure 18: concatenation of six iSegments, the study of the
steps and the railings of the stairs

Figure 19: strange MC Escher-like stairs in Montreal, and
knots from 2 to 7

4. A threefoil knot in Montreal

The second case we are going to analyse shows how an ap-
parently complex spatial curve (the Threefoil Knot Curve)
can be simplified by using simple immersed segments in a
pTorus. Staircases in Montreal are known to be quite sur-
prising, climbing up on the front of little buildings of two
or three stacked apartments, twisting themselves to deserve
every floor without obstruct too much the windows looking
on the street, reminding us the impossible stairs imagined
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by M.C. Escher. The architect Guillaume Labelle (website:
http://ingallian.design.uqam.ca/goo/), won a concourse upon
the idea to realize a stair along a curve known as the Three-
foil Knot Curve. Even if the analytical expression of this
curve remains simple in Euclidean space :

x(t) = (2+ cos(3t/2)).cos(t)

y(t) = (2+ cos(3t/2)).sin(t)

z(t) = sin(3t/2)

the definition of the tangent axes (Serret-Frenet tri-axis
TNB) needed to design the steps and the railings uses some
expressions which become complex and out a normal hu-
man scope (just good enough for computers...). Viewed as a
concatenation of six immersed segments (ipL2) in a pTorus
(Figure 18, left), this curve becomes easier to be analysed,
manipulated and displayed with the distribution of the local
Serret-Frenet axis (Figure 18, right). This approach appeared
to be useful for the final tuning up of the steps and the rail-
ings of this stair (Figure 19, top). And beyond, it may be of
some utility to wonder about the topology of the Universe,
(Figure 19, bottom) which appears to be toroidal to some
modern researchers in cosmology, and in which an infinite
straight line (followed by a light beam) could be a more or
less complex knot. Is our Universe a space-time donut or a
bretzel cake... ?

5. Funicular shapes in Sagrada Familia

Figure 20: evolution from the circle arc to the string arc

This is the equation of the string curve and its polynomial
development to the 6th order :

y = cosh(x)

= (e+x + e−x)/2

= 1+ x2/2!+ x4/4!+ x6/6!+ ...

It is well known that the curve followed by a chain tensed

under its own weight between two points in space is a funic-
ular curve, a straight line in the gravitational field, and that
reversing it upside/downside leads to structural arcs optimiz-
ing compression stresses. The problem encountered in im-
plementing such a geodesic curve in real world comes from
its transcendantal equation, and it is quite difficult to use it
in real life (say a building site).

Figure 21: from natural shapes to controlled shapes

Figure 22: complex combinations of ruled shapes

Ancient Roman architects used plain circle arcs as a rough
approximation easy to master in situ, Gothic architects went
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Figure 23: Gaudi’s Sagrada Familia Temple in Barcelona

a little closer with a double circle arc, and the Catalan ar-
chitect Antonio Gaudi definitively abandoned circles for the
parabola, a very good approximation of the chain curve as
it can be seen on the polynomial development shown above
(Figure 20). Gaudi used to say : God gives me the plan, Na-
ture gives me the elevation, This tree in front of my workshop
is my teacher. For the conception of the Sagrada Familia
Temple in Barcelona, he first built physical models using
suspended funicular meshes supporting distributed weights,
then solidified by plaster, inversed them to get the elevation,
and began to enter in the design of the columns and the vaults
with the image of a forest. At first sight, it could be thought
that Gaudi’s architecture is organic, made of true shapes
coming from nature. But in fact, Gaudi followed but did not
mimick the natural shapes (Figure 21) and in the ten last
years of his life, he defined a powerful geometric vocabulary
made of complex combinations of hyperbolic paraboloids
and paraboloids of revolution and parabolic curves (Figure
22).

Contrary to his previous organic known language, such a
vocabulay can be shared and it is required when the work-
ing process has to be done collectively. More’over, on these
ruled surfaces (they are pSurfaces), beyond straight lines
which make building possible, it becomes possible to draw
immersed segments, immersed parabolas, immersed circles,
leading to a complete geometry in curved space. The illustra-
tions of the Sagrada Familia Temple come from [BON03].

6. Conclusion

Geodesic lines followed by thin planks on curved surfaces,
complex mathematical curves as threefoil knots, funicular
curves optimizing efforts, are certainly the true solutions but

Figure 24: a straight line in a curved space

they come with a lot of mathematical complexities, mak-
ing them difficult to be understood, to be controlled and to
be used in the building of new geometrical objects. Going
straight away in general curved spaces is not so easy ! Re-
ducing curved shapes to pForms makes possible the defini-
tion of a a simple geometry in curved shapes, beginning with
immersed segments, and provides valuable alternative geo-
metric tools easier to define, manipulate and combine. These
tools may help to fly straight away in curved shapes, to redis-
cover from another point of view the figures of the classical
geometry, to help in the comprehension of modern theories
in geometry, so often inaccessibles to the non mathematician
and may be, to open a window on new ones (Figure 24)...

More can be seen at : http://marty.alain.free.fr/
(/recherche/formes pascaliennes/)
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